Abstract
摘要: 针对合成孔径雷达(Synthetic aperture radar,SAR)图像特征匹配中特征提取的不稳定性和相似度优化搜索的复杂性问题,提出了一种精确高效稳健的SAR图像边缘点集匹配方法. 首先,分析了仿射变换模型在遥感图像匹配中的适应性,并对仿射变换模型进行了参数分解;其次,提出了基于方向模板的SAR图像边缘检测算子,并利用SAR图像边缘的梯度和方向特征,建立了基于像素迁移的多源SAR边缘点集相似性匹配准则,以及图像匹配的联合相似度-联合特征均方和(Square summation joint feature,SSJF);然后,利用改进的遗传算法(Genetic algorithm,GA)来进行相似度的全局极值优化搜索,获取变换模型参数和边缘点集的对应关系;最后,从理论上分析了本文方法的性能,并利用多幅SAR图像的匹配实验以及与原有方法的对比分析,对本文方法的性能进行了验证. 关键词: 合成孔径雷达图像匹配 / 仿射变换模型 / 参数分解 / 像素迁移 / 联合相似测度 / 遗传算法
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.