Abstract

This paper describes a recently developed digital-based data acquisition system for electrical capacitance tomography (ECT). The system consists of high-capacity field-programmable gate arrays (FPGA) and fast data conversion circuits together with a specific signal processing method. In this system, digital phase-sensitive demodulation is implemented. A specific data acquisition scheme is employed to deal with residual charges in each measurement, resulting in a high signal-to-noise ratio (SNR) at high excitation frequency. A high-speed USB interface is employed between the FPGA and a host PC. Software in Visual C++ has been developed to accomplish operational functions. Various tests were performed to evaluate the system, e.g. frame rate, SNR, noise level, linearity, and static and dynamic imaging. The SNR is 60.3 dB at 1542 frames s−1 for a 12-electrode sensor. The mean absolute error between the measured capacitance and the linear fit value is 1.6 fF. The standard deviation of the measurements is in the order of 0.1 fF. The dynamic imaging test demonstrates the advantages of high temporal resolution of the system. The experimental results indicate that the digital signal processing devices can be used to construct a high-performance ECT system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.