Abstract

Cluster-size tests (CST) based on random field theory have been widely adopted in fMRI data analysis to detect brain activation. However, most existing approaches can be used appropriately only when the image is highly smoothed in the spatial domain. Unfortunately, spatial smoothing degrades spatial specificity. Recently, a threshold-free cluster enhancement technique was proposed which does not require spatial smoothing, but this method can be used only for group level analysis. Advances in imaging technology now yield high quality high spatial resolution imaging data in single subjects and an inference approach that retains the benefits of greater spatial resolution is called for. In this work, we present a new CST with a correction for voxelation to address this problem. The theoretical formulation of the new approach based on Gaussian random fields is developed to estimate statistical significance using 3D statistical parametric maps without assuming spatial smoothness. Simulated phantom and resting-state fMRI experimental data are then used to compare the voxelation-corrected procedure to the widely used standard random field theory. Unlike standard random field theory approaches, which require heavy spatial smoothing, the new approach has a higher sensitivity for localizing activation regions without the requirement of spatial smoothness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.