Abstract

AbstractIn this paper, we develop a formulation for solving equations containing higher spatial derivative terms in a spectral volume (SV) context; more specifically the emphasis is on handling equations containing third derivative terms. This formulation is based on the LDG (Local Discontinuous Galerkin) flux discretization method, originally employed for viscous equations containing second derivatives. A linear Fourier analysis was performed to study the dispersion and the dissipation properties of the new formulation. The Fourier analysis was utilized for two purposes: firstly to eliminate all the unstable SV partitions, secondly to obtain the optimal SV partition. Numerical experiments are performed to illustrate the capability of this formulation. Since this formulation is extremely local, it can be easily parallelized and a h-p adaptation is relatively straightforward to implement. In general, the numerical results are very promising and indicate that the approach has a great potential for higher dimension Korteweg-de Vries (KdV) type problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.