Abstract
We present a high order one-step ADER–WENO finite volume scheme with space–time adaptive mesh refinement (AMR) for the solution of the special relativistic hydrodynamic and magnetohydrodynamic equations. By adopting a local discontinuous Galerkin predictor method, a high order one-step time discretization is obtained, with no need for Runge–Kutta sub-steps. This turns out to be particularly advantageous in combination with space–time adaptive mesh refinement, which has been implemented following a “cell-by-cell” approach. As in existing second order AMR methods, also the present higher order AMR algorithm features time-accurate local time stepping (LTS), where grids on different spatial refinement levels are allowed to use different time steps.We also compare two different Riemann solvers for the computation of the numerical fluxes at the cell interfaces. The new scheme has been validated over a sample of numerical test problems in one, two and three spatial dimensions, exploring its ability in resolving the propagation of relativistic hydrodynamical and magnetohydrodynamical waves in different physical regimes. The astrophysical relevance of the new code for the study of the Richtmyer–Meshkov instability is briefly discussed in view of future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.