Abstract

Level set (LS) method is a widely used interface capturing method. In the simulations of incompressible two-phase flows, in order to avoid discontinuities at interfaces, the LS function is usually taken as a smeared-out Heaviside function bounded on [0, 1] and advected by a given velocity field $$\mathbf {u}$$ obtained from the solution of the incompressible Navier-Stokes equations. In the incompressible limit $$\nabla \cdot \mathbf {u}=0$$ , the advection equation for the LS function can be written and discretized in conservative form. However, due to numerical errors, the resulting velocity field is in general not divergence free which leads to the solution of the advection equation in conservative form does not satisfy the maximum principle. To overcome this issue, in this work, we develop a high-order discontinuous Galerkin (DG) method to directly solve the advection equation for the LS function in non-conservative form. Moreover, we prove that by applying a linear scaling limiter, the proposed method together with a strong stability preserving (SSP) time discretization scheme can satisfy the strict maximum principle under a suitable CFL condition. Numerical simulations of several well-known benchmark problems, including the application to incompressible two-phase flows, are presented to demonstrate the high-order accuracy and maximum-principle-satisfying property of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.