Abstract
The classical material point method (MPM) developed in the 90s is known for drawbacks which affect the quality of results. The movement of material points from one element to another leads to non-physical oscillations known as ‘grid crossing errors’. Furthermore, the use of material points as integration points renders a numerical quadrature rule of limited quality. Different solutions have been proposed in recent years to overcome these drawbacks. In this paper the approach of combining quadratic B-spline basis functions with a reconstruction based quadrature rule is pursued to solve these numerical problems. High-order B-spline basis functions solve the problem of grid crossing completely, whereas the considered reconstruction based quadrature rule reduces the quadrature error observed with MPM. In addition, the use of quadratic B-splines leads to a more accurate piecewise linear approximation of the stress field compared to the piecewise constant one obtained with linear Lagrangian basis functions commonly used with MPM. Two 1D benchmarks are considered involving large deformations, a vibrating bar and a column under self-weight. They render excellent results when adopting this high-order MPM.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.