Abstract

A new high-order finite-volume method is presented that preserves the skew symmetry of convection for the compressible flow equations. The method is intended for Large-Eddy Simulations (LES) of compressible turbulent flows, in particular in the context of hybrid RANS–LES computations. The method is fourth-order accurate and has low numerical dissipation and dispersion. Due to the finite-volume approach, mass, momentum, and total energy are locally conserved. Furthermore, the skew-symmetry preservation implies that kinetic energy, sound-velocity, and internal energy are all locally conserved by convection as well. The method is unique in that all these properties hold on non-uniform, curvilinear, structured grids. Due to the conservation of kinetic energy, there is no spurious production or dissipation of kinetic energy stemming from the discretization of convection. This enhances the numerical stability and reduces the possible interference of numerical errors with the subgrid-scale model. By minimizing the numerical dispersion, the numerical errors are reduced by an order of magnitude compared to a standard fourth-order finite-volume method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.