Abstract
We present a high order kinetic flux-vector splitting (KFVS) scheme for the numerical solution of a conservative interface-capturing five-equation model of compressible two-fluid flows. This model was initially introduced by Wackers and Koren (2004) [21]. The flow equations are the bulk equations, combined with mass and energy equations for one of the two fluids. The latter equation contains a source term in order to account for the energy exchange. We numerically investigate both one- and two-dimensional flow models. The proposed numerical scheme is based on the direct splitting of macroscopic flux functions of the system of equations. In two space dimensions the scheme is derived in a usual dimensionally split manner. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge–Kutta time stepping method. For validation, the results of our scheme are compared with those from the high resolution central scheme of Nessyahu and Tadmor [14]. The accuracy, efficiency and simplicity of the KFVS scheme demonstrate its potential for modeling two-phase flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.