Abstract

Realistic acoustic problems often involve interactions between arbitrary-shaped moving objects at the interface with a fluid domain. The present work aims at developing numerical methods to take into account moving boundaries for acoustic problems, with a high order of convergence. The reference problem considered in this work is the solution of the non-linear Euler equations by a finite-difference time-domain method, describing the formation of one-dimensional waves created by a moving piston. The most suitable class of methods to solve this type of problem in the case of complex moving boundaries is the ghost-point method for sharp interface with 4th order reconstruction. 1 In order to accurately formulate the immersed boundaries with ghost points, the boundary conditions are formulated in terms of characteristic waves of the non-linear equations. The proposed approach is also extended to represent moving boundaries with a prescribed acoustic impedance. This is achieved by coupling a time-domain acoustic impedance model to the immersed boundary technique. The method is also applied to a two-dimensional example, where an acoustic pulse is reflected by a moving wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.