Abstract

We present a high-order upwind finite-difference scheme for solving a useful family of first-order partial differential equations, of which the linearized eikonal equation is a member. Fast solutions of the linearized eikonal equation have applications in traveltime tomography and residual migration algorithms. The technique, besides being both accurate and stable, escapes aperture limitations inherent in static marching schemes. We use a time-sequential evaluation method similar to Sethian's Fast Marching strategy to insure causal operator evaluation. We apply our technique to several complex slowness distributions, including the Marmousi model. We also use an adaptation of our technique to compute Cartesian-to-Ray coordinate transforms for the same slowness models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call