Abstract

Time-domain room acoustic modeling using mass-lumped higher-order tetrahedral finite elements with an explicit time-marching scheme is highly attractive because of its excellent geometrical flexibility with unstructured meshing and applicability into massively parallel computing. However, the standard mass-lumped tetrahedral elements yield an unstable scheme, and only implicit time-marching schemes are available. This study proposes a novel wave-based room acoustics solver based on a high-order explicit time-domain FEM. The present solver uses mass-lumped 15-node tetrahedral elements for spatial discretization and a dissipation-free two-stage partitioned Runge-Kutta time integration for time discretization. The 15-node tetrahedral elements had been developed to apply mass-lumping methods to 10-node tetrahedral elements, which are the most common finite element in engineering applications, but its applicability in room acoustics problems is unknown. Higher accuracy and efficiency of the proposed method over the standard method using 10-node tetrahedral elements is presented through an eigenvalue analysis of a long duct model and acoustic simulations in a small room. Additionally, frequency-dependent sound absorbing boundary is implemented by revising an auxiliary differential equation method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call