Abstract

Multiresolution-based mesh adaptivity using biorthogonal wavelets has been quite successful with finite volume solvers for compressible fluid flow. The extension of the multiresolution-based mesh adaptation concept to high-order discontinuous Galerkin discretization can be performed using multiwavelets, which allow for higher-order vanishing moments, while maintaining local support. An implementation for scalar one-dimensional conservation laws has already been developed and tested. In the present paper we extend this strategy to systems of equations, in particular to the equations governing inviscid compressible flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.