Abstract

ABSTRACTBased on the Lubich's high-order operators, a second-order temporal finite-difference method is considered for the fractional sub-diffusion equation. It has been proved that the finite-difference scheme is unconditionally stable and convergent in norm by the energy method in both one- and two-dimensional cases. The rate of convergence is order of two in temporal direction under the initial value satisfying some suitable conditions. Some numerical examples are given to confirm the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.