Abstract
SUMMARYWe propose the use of high‐order weighted essentially non‐oscillatory interpolation and moving‐least‐squares approximation schemes alongside high‐order time integration to enable high‐order accurate particle‐in‐cell methods. The key insight is to view the unstructured set of particles as the underlying representation of the continuous fields; the grid used to evaluate integro–differential coupling terms is purely auxiliary. We also include a novel regularization term to avoid the accumulation of noise in the particle samples without harming the convergence rate. We include numerical examples for several model problems: advection–diffusion, shallow water, and incompressible Navier–Stokes in vorticity formulation. The implementation demonstrates fourth‐order convergence, shows very low numerical dissipation, and is competitive with high‐order Eulerian schemes. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.