Abstract

This paper presents an implementation scheme and experimental evaluation of a high-linearity closed-loop capacitive accelerometer based on ring-diode capacitance detection. By deducing the capacitance detection model of the ring-diode considering the influence of the diode, the existing theoretical model error of the ring-diode is corrected and a closed-loop scheme of reusing the detection electrode and the control electrode of the MEMS die is designed to apply this detection scheme to the parallel-plate accelerometer, which only has three independent electrodes. After analyzing the non-linear problems in the existing closed-loop control schemes, a theoretically absolute linear closed-loop control scheme is proposed, and an integrated closed-loop accelerometer is realized by combining the closed-loop diode detection. The experimental results of the ring-diode detection model are in agreement with the theoretical formula. The non-linearity of the accelerometer within ±1 g after the closed-loop is 130 ppm, compared with 1500 ppm when the open-loop is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.