Abstract

The interaction within the methane–methane (CH4/CH4), perfluoromethane–perfluoromethane (CF4/CF4) methane–perfluoromethane dimers (CH4/CF4) was calculated using the Hartree–Fock (HF) method, multiple orders of Møller–Plesset perturbation theory [MP2, MP3, MP4(DQ), MP4(SDQ), MP4(SDTQ)], and coupled cluster theory [CCSD, CCSD(T)], as well as the PW91, B97D, and M06-2X density functional theory (DFT) functionals. The basis sets of Dunning and coworkers (aug-cc-pVxZ, x = D, T, Q), Krishnan and coworkers [6-311++G(d,p), 6-311++G(2d,2p)], and Tsuzuki and coworkers [aug(df, pd)-6-311G(d,p)] were used. Basis set superposition error (BSSE) was corrected via the counterpoise method in all cases. Interaction energies obtained with the MP2 method do not fit with the experimental finding that the methane–perfluoromethane system phase separates at 94.5 K. It was not until the CCSD(T) method was considered that the interaction energy of the methane–perfluoromethane dimer (−0.69 kcal mol−1) was found to be intermediate between the methane (−0.51 kcal mol−1) and perfluoromethane (−0.78 kcal mol−1) dimers. This suggests that a perfluoromethane molecule interacts preferentially with another perfluoromethane (by about 0.09 kcal mol−1) than with a methane molecule. At temperatures much lower than the CH4/CF4 critical solution temperature of 94.5 K, this energy difference becomes significant and leads perfluoromethane molecules to associate with themselves, forming a phase separation. The DFT functionals yielded erratic results for the three dimers. Further development of DFT is needed in order to model dispersion interactions in hydrocarbon/perfluorocarbon systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call