Abstract
Human action recognition is very important and significant research work in numerous fields of science, for example, human–computer interaction, computer vision and crime analysis. In recent years, relative geometry features have been widely applied to the description of relative relation of body motion. It brings many benefits to action recognition such as clear description, abundant features etc. But the obvious disadvantage is that the extracted features severely rely on the local coordinate system. It is difficult to find a bijection between relative geometry and skeleton motion. To overcome this problem, many previous methods use relative rotation and translation between all skeleton pairs to increase robustness. In this paper we present a new motion representation method. It establishes a motion model based on the relative geometry with the aid of special orthogonal group SO(3). At the same time, we proved that this motion representation method can establish a bijection between relative geometry and motion of skeleton pairs. After the motion representation method in this paper is used, the computation cost of action recognition reduces from the two-way relative motion (motion from A to B and B to A) to one-way relative motion (motion from A to B or B to A) between any skeleton pair, namely, permutation problem [Formula: see text] is simplified into combinatorics problem [Formula: see text]. Finally, the experimental results of the three motion datasets are all superior to present skeleton-based action recognition methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.