Abstract

Within neural monitoring systems, the front-end amplifier forms the critical element for signal detection and pre-processing, which determines not only the fidelity of the biosignal, but also impacts power consumption and detector size. In this paper, a novel combined feedback loop-controlled approach is proposed to compensate for input leakage currents generated by low noise amplifiers when in integrated circuit form alongside signal leakage into the input bias network. This loop topology ensures the Front-End Amplifier (FEA) maintains a high input impedance across all manufacturing and operational variations. Measured results from a prototype manufactured on the AMS 0.35 [Formula: see text] CMOS technology is provided. This FEA consumes 3.1 [Formula: see text] in 0.042 [Formula: see text], achieves input impedance of 42 [Formula: see text], and 18.2 [Formula: see text] input-referred noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.