Abstract

We study in detail the evolution of the 2015 outburst of GS 1354-64 (BW Cir) at optical, UV and X-ray wavelengths using Faulkes Telescope South/LCOGT, SMARTS and Swift. The outburst was found to stay in the hard X-ray state, albeit being anomalously luminous with a peak luminosity of L$_{X} >$ 0.15 L$_{Edd}$, which could be the most luminous hard state observed in a black hole X-ray binary. We found that the optical/UV emission is tightly correlated with the X-ray emission, consistent with accretion disc irradiation and/or a jet producing the optical emission. The X-ray spectra can be fitted well with a Comptonisation model, and show softening towards the end of the outburst. In addition, we detect a QPO in the X-ray lightcurves with increasing centroid frequency during the peak and decay periods of the outburst. The long-term optical lightcurves during quiescence show a statistically significant, slow rise of the source brightness over the 7 years prior to the 2015 outburst. This behaviour as well as the outburst evolution at all wavelengths studied can be explained by the disc instability model with irradiation and disc evaporation/condensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.