Abstract

Gold (Au) electrodes are one of the most ideal electrodes and are extensively used to construct electrochemical biological detection platforms. The electrode-molecule interface between the Au electrode and biomolecules is critical to the stability and efficiency of the detection platform. However, traditional Au-sulfur (Au-S) interfaces experience distortion due to high levels of glutathione (GSH) and other biological thiols in biological samples as well as a high charge barrier when electrons are injected into the biomolecule from the Au electrode. In view of the higher bonding energy of Au-selenium (Au-Se) bonds than those of Au-S bonds and the elevated Fermi energy of the Au electrodes when Au-Se bonds are formed instead of Au-S bonds at the interface between the electrodes and molecules, we establish a new type of electrochemical platform based on the Au-Se interface (Au-Se electrochemical platform) for high-fidelity biological detection. Compared with that of the electrochemical platform based on the Au-S interface (Au-S electrochemical platform), the Au-Se electrochemical platform shows a higher charge transfer rate and excellent stability in millimolar levels of GSH. The Au-Se electrochemical platform supplies an ideal solution for accurate biological detection and has great potential in biomedical detection applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.