Abstract

Benzoyl peroxide (BPO), as a widely used organic peroxide, has attracted widespread attention from all sectors of society for its environmental hazards and potential risks to human health. Herein, we employed a Förster resonance energy transfer (FRET) strategy to construct a novel ratiometric fluorescent probe CY-DCI for BPO detection in food, zebrafish, and mice. Specifically, a hemicyanine fluorophore and a dicyanoisophorone fluorophore were connected with a piperazine group as donor and acceptor, respectively, and an olefinic unsaturated bond as the reaction site. CY-DCI has favorable selectivity and an excellent detection limit as low as 58.1 nM, and the recovery rates for real-sample detection ranged from 95.8 % to 104 %, with relative standard deviations (RSD) less than 2.58 %. To further improve its practicality, silica gel plates and test strips containing CY-DCI (0–50 μM) were developed for naked-eye detection of BPO with satisfactory results. Additionally, this novel probe was then applied for ratiometric imaging of living zebrafish and mice and showed high ratiometric imaging resolution in the green and red channels, thus demonstrating its practical application for BPO detection and toxicity early warning in food and biosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.