Abstract

Translation of the CRISPR/Cas9 system to human therapeutics holds high promise. Specificity remains a concern, however, especially when modifying stem cell populations. We show that existing rationally-engineered Cas9 high fidelity variants have reduced on-target activity using the therapeutically relevant ribonucleoprotein (RNP) delivery method. Therefore, we devised an unbiased bacterial screen to isolate variants that retain activity in the RNP format. Introduction of a single point mutation, R691A (HiFi Cas9), retained high on-target activity while reducing off-target editing. HiFi Cas9 induces robust AAV6-mediated gene targeting at five therapeutically-relevant loci (HBB, IL2RG, CCR5, HEXB, TRAC) in human CD34+ hematopoietic stem and progenitor cells (HSPCs) as well as primary T-cells. We also show that the HiFi Cas9 mediates high-level correction of the sickle cell disease (SCD)-causing Glu6Val mutation in SCD patient derived HSPCs. We anticipate that HiFi Cas9 will have wide utility for both basic science and therapeutic genome editing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.