Abstract

The Bi-modified Pt nanoparticle catalysts using multi-walled carbon nanotubes as supports are prepared through microwave treatment and long-term standing approaches. Bi can easily modify Pt catalyst because of the strong affinity between Bi and Pt. However, only limited amount of Bi and uneven Bi-modified Pt catalyst are obtained through the long-term standing approach. The microwave approach can complete the synthesis rapidly and get uniform Bi–Pt/CNT catalysts. X-ray photoelectron spectroscopy shows that Bi (III) and Pt (0) species are the main form in the Bi–Pt/CNT catalyst. Cyclic voltammetry indicates that the modification of Bi on Pt/CNTs leads to an enhanced activity up to 260% compared to Pt/CNTs for ethanol electro-oxidation. The current of Bi–Pt/CNTs (0.1:1) is 44.8 times higher than that of Pt/CNTs at −0.3V for 1800s. Linear current sweep results reveal that the electro-oxidation of residual intermediate species can be effectively promoted because the adsorption of OHad species is enhanced by the addition of Bi to Pt/CNTs, which is characterized by the higher open circuit potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.