Abstract

In this paper we propose an optical biosensor based on two vertically stacked Silicon on Insulator (SOI) micro-ring resonators interacting with a microfluidic ring channel. This device behaves as a resonant optical coupler and it is very sensitive to the variation of the coupling coefficient between the two vertically stacked ring resonators. A ring microfluidic channel is proposed in the coupling region between the two vertically stacked ring resonators. The inner walls of the channel are funzionalized in order to the trap a specific biological species. Assuming a biotin-streptavidin system, the straptividin trapping gives rise to a change of the biological thickness of about 3 nm. This thickness increase of the deposited layer leads to a consequent change in the coupling strength between the two rings. These theoretical predictions have been validated by using both 3D Finite-Difference Time-Domain (FDTD) and 3D full-vectorial Finite Element Method (FEM) approaches. Moreover, by appropriately choosing the design parameters of the micro-resonant structure, we evaluate a sensitivity of the spectral response to the streptavidin adlayer variation of about 20% nm−1 for TE polarization and 34% nm−1 for TM polarization, which represents an important achievement to obtain selective SOI bio-sensors with ultra-high resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.