Abstract

This paper proposes a hybrid microwave power receiving (MPR) metasurface array with efficient dual matching of surface impedance and phase gradient. The hybrid array comprises three components: a reflective phase gradient metasurface (R-PGM) array, a surface wave focusing array, and an energy harvesting port. The R-PGMs efficiently convert incident electromagnetic waves into surface waves. The surface wave focusing array then concentrates the energy onto the integrated harvesting port through dual matching of surface impedance and phase gradient. Connecting a rectifier circuit enables efficient microwave energy reception and RF-DC conversion, avoiding the need for multiple rectifiers or complex feeding networks in traditional MPR designs. Numerical analysis and experimental tests verify the superior performance of this hybrid array design in efficient microwave energy harvesting and RF-DC conversion, achieving 90.84% plane wave-to-surface wave conversion efficiency, 76.67% surface wave energy harvesting efficiency, and 49.28% overall RF-DC conversion efficiency. Across the wideband range of 5.6–6.0 GHz, the energy harvesting efficiency remains consistently high, demonstrating the superior characteristics and promising potential of this design in MPR device development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.