Abstract
Abstract We present CO J = 4–3 line and 3 mm dust continuum observations of a 100 kpc-scale filamentary Lyα nebula (SSA22 LAB18) at z = 3.1 using the Atacama Large Millimeter/submillimeter Array (ALMA). We detected the CO J = 4–3 line at a systemic zCO = 3.093 ± 0.001 at 11 σ from one of the ALMA continuum sources associated with the Lyα filament. We estimated the CO J = 4–3 luminosity of $L^{\prime }_{\rm {CO(4-3)}}=(2.3 \pm 0.2)\times 10^{9}\:$K km s−1 pc2 for this CO source, which is one order of magnitude smaller than those of typical z > 1 dusty star-forming galaxies (DSFGs) of similar far-infrared luminosity LIR ∼ 1012 L⊙. We derived a molecular gas mass of $M_{\rm {gas}} = (4.4^{+0.9}_{-0.6}) \times 10^{9}\, M_{{\odot }}$ and a star-formation rate of SFR =270 ± 160 M⊙ yr−1. We also estimated a gas depletion time of τdep = 17 ± 10 Myr, which is shorter than those of typical DSFGs. It is suggested that this source is in the transition phase from DSFG to a gas-poor, early-type galaxy. From ALMA to Herschel multi-band dust continuum observations, we measured a dust emissivity index β = 2.3 ± 0.2, which is similar to those of local gas-poor, early-type galaxies. From recent laboratory experiments, the specific chemical compositions needed to reproduce such a high β for interstellar dust at the submillimeter wavelengths. ALMA CO and multi-band dust continuum observations can constrain the evolutionary stage of high-redshift galaxies through τdep and β, and thus we can investigate the chemical composition of dust even in the early Universe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.