Abstract

Commonly used high displacement ultrasonic actuators are composed of a Langevin transducer and of a sectional ultrasonic concentrator working as a displacement amplifier. In this work, a novel ultrasonic actuator, which exploits a displacement amplifier vibrating in a flexural mode, is proposed. Design and analysis of the actuator have been performed by using a FEM software. Performances of the proposed actuator have been evaluated by using a classical ultrasonic actuator, based on a stepped horn concentrator, as a benchmark. Simulated results have shown that the flexural amplifier exhibits a displacement amplification about 50% higher than that of the stepped horn; furthermore, due to its capability to absorb a higher electrical power, the whole actuator has shown a maximum displacement that is twice the maximum displacement of the stepped horn actuator. Simulated results have been validated by measurements carried out on two manufactured prototypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.