Abstract

For the test of sphericity, Ledoit and Wolf [Ann. Statist. 30 (2002) 1081–1102] proposed a statistic which is robust against high dimensionality. In this paper, we consider a natural generalization of their statistic for the test that the smallest eigenvalues of a covariance matrix are equal. Some inequalities are obtained for sums of eigenvalues and sums of squared eigenvalues. These bounds permit us to obtain the asymptotic null distribution of our statistic, as the dimensionality and sample size go to infinity together, by using distributional results obtained by Ledoit and Wolf [Ann. Statist. 30 (2002) 1081–1102]. Some empirical results comparing our test with the likelihood ratio test are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.