Abstract

This paper presents an effective method for measuring oil debris with high confidence to ensure the wear monitoring of aero-engines, which suffers from severe noise interference, weak signal characteristics, and false detection. First, an improved variational mode decomposition algorithm is proposed, which combines wavelet transform and interval threshold processing to suppress the complex noise interference on the signal. Then, a long-short-term memory neural network with deep scattering spectrum preprocessing is used to identify the signal characteristics under the multi-resolution analysis framework. The optimal hyperparameters are automatically configured using Bayesian optimization to solve the problem of weak, distorted, and hard-to-extract signal characteristics. Finally, a detection algorithm based on multi-window fusion judgment is applied to improve the confidence of the detection process, reduce the false detection and false alarm rate, and calculate the debris size information according to the sensor principle. The experimental results show that the proposed method can extract debris signals from noise with a signal-to-noise ratio improvement of more than 9 dB, achieve a high recognition accuracy of 99.76% with a missed detection rate of 0.24%, and output size information of debris to meet the need for aero-engine oil debris measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.