Abstract

We present a high-capacity reversible, fragile, and blind watermarking scheme for medical images in this paper. A bottom-up saliency detection algorithm is applied to automatically locate the multiple arbitrarily-shaped regions of interest (ROIs). The iterative square-production algorithm is developed to generate different sizes of squares for shape decomposition on the regions of noninterest (RONIs). This scheme of combining the frequency-domain watermarking and arbitrarily-shaped ROI methods can significantly increase the watermarking capacity, whereas the embedded image fidelity is preserved. Extensive experiments were carried out on the OASIS medical image dataset, which consists of a cross-sectional collection of 416 subjects, aged from 18 to 96 years old. The results show that the proposed scheme outperforms six existing state-of-the-art schemes in terms of watermarking capacity and embedded image fidelity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.