Abstract
Randall's plaques (RP) serve as anchoring sites for calcium oxalate (CaOx) stones, but the underlying mechanism remains unclear. Renal interstitium with a high-calcium environment is identified as pathogenesis of RP formation where the role of human renal interstitial fibroblasts (hRIFs) was highlighted. Our study aims to elucidate the potential mechanism by which a high-calcium environment drives ectopic calcification of hRIFs to participate in RP formation. Alizarin Red staining demonstrated calcium nodules in hRIFs treated with high-calcium medium. Utilizing transcriptome sequencing, tissue factor pathway inhibitor-2 (TFPI-2) was found to be upregulated in high-calcium-induced hRIFs and RP tissues, and TFPI-2 promoted high-calcium-induced calcification of hRIFs. Subsequently, the downstream regulator of TFPI2 was screened by transcriptome sequencing analysis of hRIFs with TFPI-2 knockdown or overexpressed. Dachsous Cadherin Related 1 (DCHS1) knockdown was identified to suppress the calcification of hRIFs enhanced by TFPI-2. Further investigation revealed that TFPI-2/DCHS1 axis promoted high-calcium-induced calcification of hRIFs via disturbing the balance of ENPP1/ALP activities, but without effect on the canonical osteogenic markers, such as osteopontin (OPN), osteogenic factors runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2). In summary, our study mimicked the high-calcium environment observed in CaOx stone patients with hypercalciuria, and discovered that the high-calcium drove ectopic calcification of hRIFs via a novel TFPI-2-DCHS1-ALP/ENPP1 pathway rather than adaption of osteogenic phenotypes to participate in RP formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.