Abstract

Position sensing with resolution down to the scale of a single atom is of key importance in nanoscale science and engineering. However, only optical-sensing methods are currently capable of non-contact sensing at such resolution over a high bandwidth. Here, we report a new non-contact, non-optical position-sensing concept based on detecting changes in a high-gradient magnetic field of a microscale magnetic dipole by means of spintronic sensors. Experimental measurements show a sensitivity of up to 40 /μm, a linear range greater than 10 μm and a noise floor of 0.5 pm/. Also shown is the use of the sensor for position measurements for closed-loop control of a high-speed atomic force microscope with a frame rate of more than 1 frame/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.