Abstract
The development of strain-insensitive stretchable transparent conductors (TCs) is essential for manufacturing stretchable electronics. Despite recent progress, achieving a high optoelectronic performance under applied strain of 50% continues to present a significant challenge in this research field. Herein, an ultratall and ultrathin high aspect ratio serpentine metal structure is described that exhibits a remarkable stretching ability (the resistance remains constant under applied strain of 100%) and simultaneously provides an excellent transparent conducting performance (with a sheet resistance of 7.6 Ω -1 and a transmittance of 90.5%). It is demonstrated that the highly stretchable transparent conducting properties can be attributed to the high aspect ratio feature. A high aspect ratio (aspect ratio of 17-367) structure permits facile deformation of the serpentine structure with in-plane motion, leading to a high stretching ability. In addition, this structural feature avoids the classic tradeoff between optical transmittance and electrical conductance, providing a high electrical conductance without decreasing the optical transmittance. The practical utility of these devices is tested by using these TCs as stretchable interconnectors among LEDs or in wearable VOC gas sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.