Abstract

In this paper, we present a new improved numerical framework to evaluate the time-dependent radiative transfer equation (RTE) for underwater optical wireless communication (UOWC) systems. The RTE predicts the optical path-loss of light in an underwater channel, as a function of the inherent optical properties (IOPs) related to the water type, namely the absorption and scattering coefficients as well as the phase scattering function (PSF). We reach the simulation performance based on an improvement of the finite difference scheme proposed in [1] as well as an enhancement of the quadrature method aiming to calculate the integral term of the RTE [2]. Additionally, we evaluate the received power at the receiver plane in three dimensions by considering a given receiver aperture and a field of view (FOV). Finally, we evaluate the UOWC system's bit error rate performance metric as a function of the propagation distance, and time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.