Abstract
This paper presents a high-accuracy 3D (three-dimen-sional) measurement system using multi-camera passive stereo vision to reconstruct 3D surfaces of free form objects. The proposed system is based on an efficient stereo correspondence technique, which consists of (i) coarse-to-fine correspondence search, and (ii) outlier detection and correction, both employing phase-based image matching. The proposed sub-pixel correspondence search technique contributes to dense reconstruction of arbitrary-shaped 3D surfaces with high accuracy. The outlier detection and correction technique contributes to high reliability of reconstructed 3D points. Through a set of experiments, we show that the proposed system measures 3D surfaces of objects with sub-mm accuracy. Also, we demonstrate high-quality dense 3D reconstruction of a human face as a typical example of free form objects. The result suggests a potential possibility of our approach to be used in many computer vision applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.