Abstract
Let M : = Γ\G/K be the quotient of an irreducible Hermitian symmetric space G/K by a torsionfree cocompact lattice $${\Gamma \subset G}$$ . Let V be a complex irreducible representation of G. We give a Hodge decomposition of the cohomology of the Γ-module V in terms of the cohomologies of automorphic vector bundles on M associated to the Lie algebra cohomologies $${H*({\mathfrak p}^{+} ,V)}$$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.