Abstract

A discrete three-by-three matrix spectral problem is put forward and the corresponding discrete soliton equations are deduced. By means of the trace identity the Hamiltonian structures of the resulting equations are constructed, and furthermore, infinitely many conservation laws of the corresponding lattice system are obtained by a direct way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.