Abstract

A hierarchy of diffusive partial differential equations is derived by a moment method and a Chapman–Enskog expansion from the semiconductor Boltzmann equation assuming dominant collisions. The moment equations are closed by employing the entropy maximization principle of Levermore. The new hierarchy contains the well-known drift-diffusion model, the energy-transport equations, and the six-moments model of Grasser et al. It is shown that the diffusive models are of parabolic type. Two different formulations of the models are derived: a drift-diffusion formulation, allowing for a numerical decoupling, and a symmetric formulation in generalized dual-entropy variables, inspired by nonequilibrium thermodynamics. An entropy inequality (or H-theorem) follows from the latter formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.