Abstract

Homeostatic control of neural function can be mediated by the regulation of ion channel expression, neurotransmitter receptor abundance, or modulation of presynaptic release. These processes can be implemented through cell autonomous or intercellular signaling. It remains unknown whether different forms of homeostatic regulation can be coordinated to achieve constant neural function. One way to approach this question is to confront a simple neural system with conflicting perturbations and determine whether the outcome reflects a coordinated, homeostatic response. Here, we demonstrate that two A-type potassium channel genes, shal and shaker, are reciprocally, transcriptionally coupled to maintain A-type channel expression. We then demonstrate that this homeostatic control of A-type channel expression prevents target-dependent, homeostatic modulation of synaptic transmission. Thus, we uncover a homeostatic mechanism that reciprocally regulates A-type potassium channels, and we define a hierarchical relationship between cell-intrinsic control of ion channel expression and target-derived homeostatic control of synaptic transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.