Abstract

Influence maximization refers to mining top-K most influential nodes from a social network to maximize the final propagation of influence in the network, which is one of the key issues in social network analysis. It is a discrete optimization problem and is also NP-hard under both independent cascade and linear threshold models. The existing researches show that although the greedy algorithm can achieve an approximate ratio of \( \left( {1 - 1/e} \right) \), its time cost is expensive. Heuristic algorithms can improve the efficiency, but they sacrifice a certain degree of accuracy. In order to improve efficiency without sacrificing much accuracy, in this paper, we propose a new approach called Hierarchy based Influence Maximization algorithm (HBIM in short) to mine top-K influential nodes. It is a two-phase method: (1) an algorithm for detecting information diffusion levels based on the first-order and second-order proximity between social nodes. (2) a dynamic programming algorithm for selecting levels to find influential nodes. Experiments show that our algorithm outperforms the benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.