Abstract

AbstractOne of the most fundamental characteristics of a biomaterial tailored for bone repair and regeneration is its ability to promote bone regeneration and healing of large defects. This work reports producing a functionalized and hieratically porous bone scaffold that significantly supports cell adhesion and proliferation by providing bone mimicry structure and controlled release of protein. The Slit Guidance Ligand 3 (SLIT3) protein was previously tested to promote bone formation and control the resorption process in natural bone healing. In this study, our goal was to design a nanocomposite bone scaffold to be functionalized with SLIT3 protein and then evaluate the uptake and release profile from surface into culture media to support bone marrow-derived mesenchymal stem cells (MSC) 3D culture. Indirect 3D printing of a polylactic-co-glycolic acid (PLGA), hydroxyapatite nanoparticles, and polydopamine coated (PLGA-HANPs-PDA) was utilized to obtain a hierarchically porous and SLIT3 protein-releasing scaffold. The produced scaffold was evaluated and optimized using chemical, architectural, mechanical, and biological characterization techniques. Optimal physicochemical properties resulted in a unique microstructure with an average pore size of 178.06 ± 45 µm, 63% porosity, and stable and homogenous chemical composition. Mechanical testing demonstrated a compression strength up to 1.5 MPa at 75% strain, with a compression modulus of 0.58 ± 0.05 MPa. Preliminary biological experiments showed that the scaffold exhibited gradual SLIT3 protein release, biodegradability, and reliable biocompatibility for MSC cell culture. Finally, we showed for first time the bioactivity of SLIT3 protein within PLGA-HANPs-PDA scaffold to promote attachment and growth of mesenchymal stem cell (MSCs) seeded in bone mimicry scaffold matrix. The collected findings will serve as a bedrock for thorough and targeted in vitro studies to evaluate anticipated osteogenesis the MSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.