Abstract

Climate change has recently caused more and more severe temperatures, inducing a growing demand for personal thermal management at outdoors. However, designing textiles that can achieve personal thermoregulation without energy consumption in severely hot and cold environments remains a huge challenge. Herein, a hierarchically nanofibrous (HNF) textile with improved thermal insulation and radiative thermal management functions is fabricated for efficient personal thermal management in severe temperatures. The textile consists of a radiative cooling layer, an intermediate thermal insulation layer, and a radiative heating layer, wherein the porous lignocellulose aerogel membrane (LCAM) as intermediate layer has low thermal conductivity (0.0366 W·m-1·K-1), ensuring less heat loss in cold weather and blocking external heat in hot weather. The introduction of polydimethylsiloxane (PDMS) increases the thermal emissivity (90.4%) of the radiative cooling layer in the atmospheric window and also endows it with a perfect self-cleaning performance. Solar absorptivity (80.1%) of the radiative heating layer is dramatically increased by adding only 0.05 wt% of carbon nanotubes (CNTs) into polyacrylonitrile. An outdoor test demonstrates that the HNF textile can achieve a temperature drop of 7.2 °C compared with white cotton in a hot environment and can be as high as 12.2 °C warmer than black cotton in a cold environment. In addition, the HNF textile possesses excellent moisture permeability, breathability, and directional perspiration performances, making it promising for personal thermal management in severely hot and cold environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call