Abstract

The lithium-sulfur (Li-S) battery is a promising next-generation rechargeable battery with high energy density. Given the outstanding capacities of sulfur (1675 mAh g-1) and lithium metal (3861 mAh g-1), Li-S battery theoretically delivers an ultrahigh energy density of 2567 Wh kg-1. However, this energy density cannot be realized due to several factors, particularly the shuttling of polysulfide intermediates between the cathode and anode, which causes serious degradation of capacity and cycling stability of a Li-S battery. In this work, a simple and scalable route was employed to construct a freestanding laser-scribed graphene (LSG) interlayer that effectively suppresses the polysulfide shuttling in Li-S batteries. Thus, a high specific capacity (1160 mAh g-1) with excellent cycling stability (80.4% capacity retention after 100 cycles) has been achieved due to the unique structure of hierarchical three-dimensional pores in the freestanding LSG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.