Abstract

This paper presents a new strategy to build multi tree hierarchical structure SVM which can get a more efficient and accuracy classification model for multiclass problems. Base on the theory of Binary Tree SVM (BTS), we proposed an improvement algorithm which extend binary tree structure to a multi tree structure, In the multi tree hierarchical structure, similarity clustering method was proposed to cluster classes to groups in each non-leaf node. In order to get a multi node division, one-against-all (OAA) was applied to train those groups rather than classes. The proposed method can avoid data imbalanced problem occurred in OAA, also the classification area of classifier in the upper layer is larger than classifier in lower layer. Compared with other several well-known methods, experiments on many data sets demonstrate that our method can reduce the number of classifiers in the testing phase and get a higher accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.