Abstract

As one of the most complex and largest dynamic industrial systems, a modern power grid envisages the wide-area measurement protection and control (WAMPAC) system as the grid sensing backbone to enhance security, reliability, and resiliency. However, based on the massive wide-area measurement data, how to realize real-time short-term voltage stability (STVS) assessment is an essential yet challenging problem. This paper proposes a hierarchical and self-adaptive data-analytics method for real-time STVS assessment covering both the voltage instability and the fault-induced delayed voltage recovery phenomenon. Based on a strategically designed ensemble-based randomized learning model, the STVS assessment is achieved sequentially and self-adaptively. Besides, the assessment accuracy and the earliness are simultaneously optimized through the multiobjective programming. The proposed method has been tested on a benchmark power system, and its exceptional assessment accuracy, speed, and comprehensiveness are demonstrated by comparing with existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.