Abstract

The increasing resolution of Digital Elevation Models (DEMs) and the development of drainage network extraction algorithms make it possible to develop high-resolution drainage networks for large river basins. These vector networks contain massive numbers of river reaches with associated geographical features, including topological connections and topographical parameters. These features create challenges for efficient map display and data management. Of particular interest are the requirements of data management for multi-scale hydrological simulations using multi-resolution river networks. In this paper, a hierarchical pyramid method is proposed, which generates coarsened vector drainage networks from the originals iteratively. The method is based on the Horton–Strahler's (H–S) order schema. At each coarsening step, the river reaches with the lowest H–S order are pruned, and their related sub-basins are merged. At the same time, the topological connections and topographical parameters of each coarsened drainage network are inherited from the former level using formulas that are presented in this study. The method was applied to the original drainage networks of a watershed in the Huangfuchuan River basin extracted from a 1-m-resolution airborne LiDAR DEM and applied to the full Yangtze River basin in China, which was extracted from a 30-m-resolution ASTER GDEM. In addition, a map-display and parameter-query web service was published for the Mississippi River basin, and its data were extracted from the 30-m-resolution ASTER GDEM. The results presented in this study indicate that the developed method can effectively manage and display massive amounts of drainage network data and can facilitate multi-scale hydrological simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.