Abstract

This paper presents a two-layer control strategy designed for easy integration of supercapacitors in a grid-integrated solar photovoltaic-battery hybrid renewable system, initially controlled by a typical model predictive control method. To operate the upgraded energy system, either without or with little modifications of the pre-existing architecture, an additional control layer is applied at the bottom of the original control system. Considering the complementary characteristics of batteries and supercapacitors, the design of the new model predictive control layer and its coordination with the original one help to deliver a stable power flow between the hybrid renewable system and the utility grid, and remove fast variations from the battery power. Actual measurements of solar radiation in South Africa are used to test the effectiveness of the proposed strategy. Simulations carried out on a 1-MW photovoltaic plant confirm the benefits in terms of adherence to power quality regulations, improved conditioning of the power generated by the intermittent renewable sources, and lifetime extension of the battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.