Abstract

Automatic sleep staging methods usually extract hand-crafted features or network trained features from signals recorded by polysomnography (PSG), and then estimate the stages by various classifiers. In this study, we propose a classification approach based on a hierarchical neural network to process multi-channel PSG signals for improving the performance of automatic five-class sleep staging. The proposed hierarchical network contains two stages: comprehensive feature learning stage and sequence learning stage. The first stage is used to obtain the feature matrix by fusing the hand-crafted features and network trained features. A multi-flow recurrent neural network (RNN) as the second stage is utilized to fully learn temporal information between sleep epochs and fine-tune the parameters in the first stage. The proposed model was evaluated by 147 full night recordings in a public sleep database, the Montreal Archive of Sleep Studies (MASS). The proposed approach can achieve the overall accuracy of 0.878, and the F1-score is 0.818. The results show that the approach can achieve better performance compared to the state-of-the-art methods. Ablation experiment and model analysis proved the effectiveness of different components of the proposed model. The proposed approach allows automatic sleep stage classification by multi-channel PSG signals with different criteria standards, signal characteristics, and epoch divisions, and it has the potential to exploit sleep information comprehensively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call