Abstract

A hierarchical multiple model adaptive control (MMAC) is described for discrete-time stochastic systems with unknown sensor and actuator parameters, where the decentralized structure consists of a central processor and of m local processors which do not communicate between each other. A major assumption in this study is that the central and any local stations have different knowledge of the hypotheses on the unknown parameters. This leads to a flexible design algorithm for passively adaptive control strategies. Furthermore, the coordinator algorithm in evaluating the global a posteriori probability is relatively simple to implement. The result is applied to the design problem of an instrument failure detection and identification (FDI) system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call